Unlocking User-Centered Design Methods for Building Cyber Security Visualizations

Sean McKenna^{1,2}, Diane Staheli², Miriah Meyer¹

¹University of Utah

² MIT Lincoln Laboratory

motivation

user-centered design:

incorporate user needs

for **cyber security**:

user-centered design methods have been used

e.g. cyber command gauge cluster [Erbacher 2012]

significant **challenges** for cyber security

design methods can overcome limited time and access to users

qualitative coding

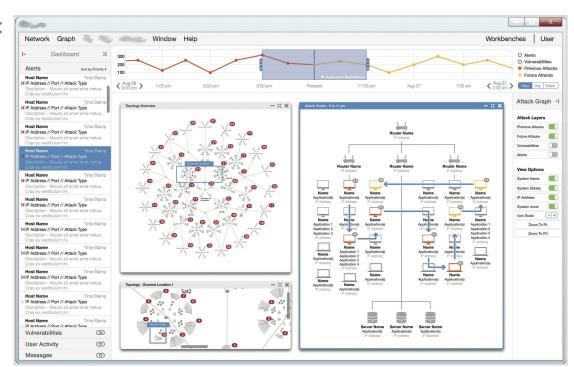
personas

data sketches

redesign

dashboard

redesign of a software tool


cyber security firm hired our team:

evaluate usability

find right visualizations

team was new to cyber security and limited access to users

performed literature review to begin to understand this space

cyber security dashboard

facilitate communication of cyber information

different goals:

identify users

compare options

previous work focused on analysts as users

qualitative coding

we had **too much** information!

detailed analysis of 3 papers:

cognitive task analysis (CTA)

key focus on users

qualitative coding:

structure, organizing and consolidating information [Strauss & Corbin 1990]

process:

find quotes, assign codes, meet to agree, and adapt codes

results of qualitative coding:

situational awareness

communication

network analyst

managers

perception

phases

roles

roles

responsibilities

category	sub-category	sub-sub-category	evidence	author	pages
communities	attackers		" increasingly sophisticated technical and social attacks from organized criminal operations"	D'Amico	19
data	external	website	"information published on hacker websites"	D'Amico	29
data	processed	report	"incident report, intrusion set, problem set from other organizations, information about the source and or sponsor of attack" & "incident reports are [often] textual documents"	D'Amico	35
data	raw	packets (data, netflow)	"network packet traffic, netflow data or host-based log data"	D'Amico	25
design guidelines	tutorial		"tutorial on how to get started; not just the user's manual certification process so people can become certified"	Erbacher	212
design guidelines	uncertainty visualization		"visualization should have a weight based on the accuracy of info" & "force-directed graphs where trust is the primary spring force"	Erbacher	210,212
other	metaphor		"Cyber security is essentially a human-on-human adversarial game played out by automated avatars."	Fink	46
		1000	"During the first stage, a CND analyst acquires data about the monitored environment, which is typical of the perceptual stage of situation	- 111	

"importance of analyst communication in the data transformation"

"If a vulnerability scan returned a suspect IP address, he would then have to go through several different tools in different windows to get information about the IP, such as the host name, its location in the network or building,

"most were active analysts; a few were managers"

"computer network defense (CND) analysts"

D'Amico

D'Amico

D'Amico

D'Amico

32

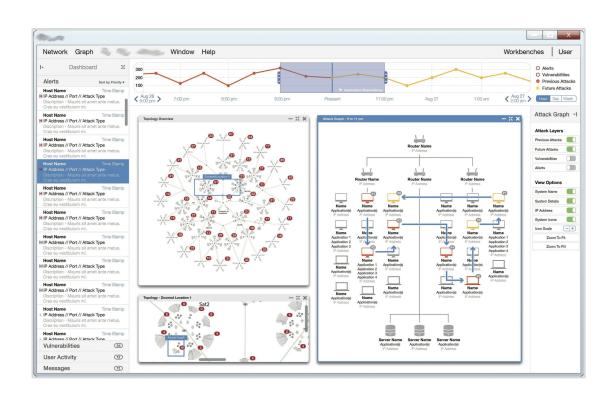
23

19

awareness."

synthesized codes into **design opportunities**:

e.g. temporal visualization


prioritized opportunities and iterated into a mockup interface

cyber security firm:

developer made changes

evaluation (A/B testing)

deployed new version

reflections:

found user needs with limited access to users

effective method since resulted in a deployed tool

cannot replace access to real users

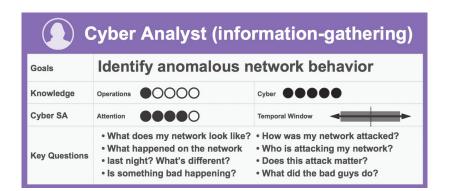
usage recommendation:

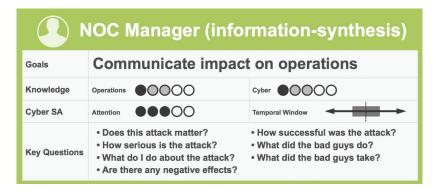
start small, expand your scope & code papers from appropriate venues:

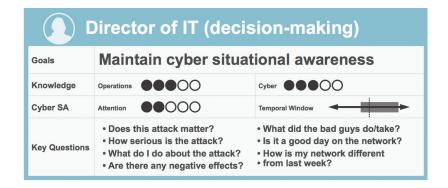
e.g. VizSec, VIS, CHI, HFES, Behavior & Information Technology, Computers & Security, FIRST, HST, AMCIS, SAM, CyCon, FloCon, CogSIMA, DHS CATCH, HCI HAS, CTS SECOTS

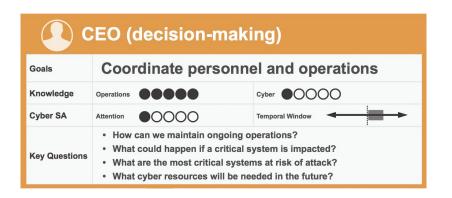
personas

what is a **persona**?

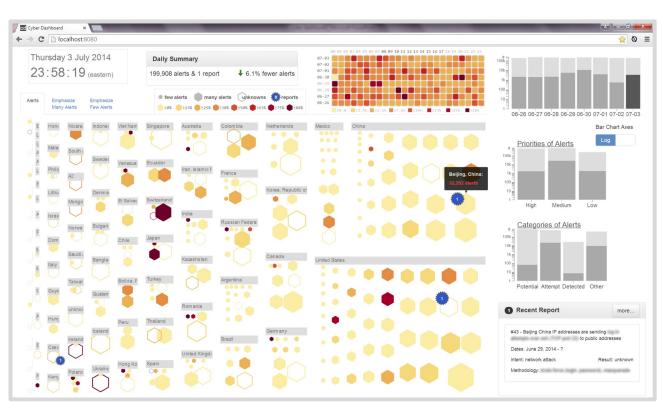

archetypes of users [Martin & Hanington 2012]


to build personas:


conducted **interviews** across various stakeholders


identified **four types** of personas:

- analyst, manager, director of IT, and a CEO
- specific to a cyber security dashboard


used personas to target users: analysts and managers

focus saved time

crafted ideas for a dashboard, prioritized against personas

first prototype produced

not deployed yet though

reflections:

limited our design focus to certain users

personas could be used in future projects

usage recommendation:

talk with real users, if possible, to build personas

otherwise, use existing research, like qualitative coding

data sketches

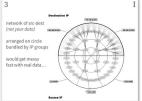
what is a **data sketch**?

a quick and dirty visualization [Lloyd & Dykes 2011]

acquire data:

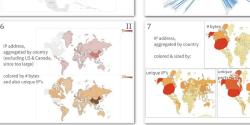
obtained a **network flow** dataset from an analyst at our university

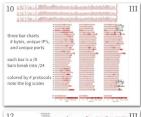
visualize data:

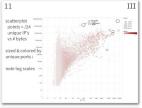

brainstorm various ways to encode

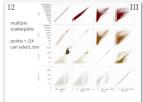
what is the best way to represent data on a dashboard?

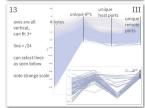
produced 20 data sketches using Python, Tableau, Gephi, and D3.js




plotting IP address source & destination as lines on a map


centered on Utah; over-plotted for entire dataset...





15

boxes, broken

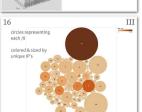
unique IP's

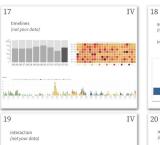
can separate

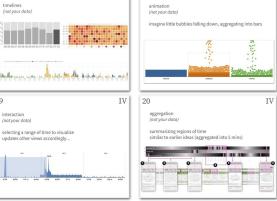
internal vs. external IP's

from /8 into /24

colored & sized by




14


(not your data)

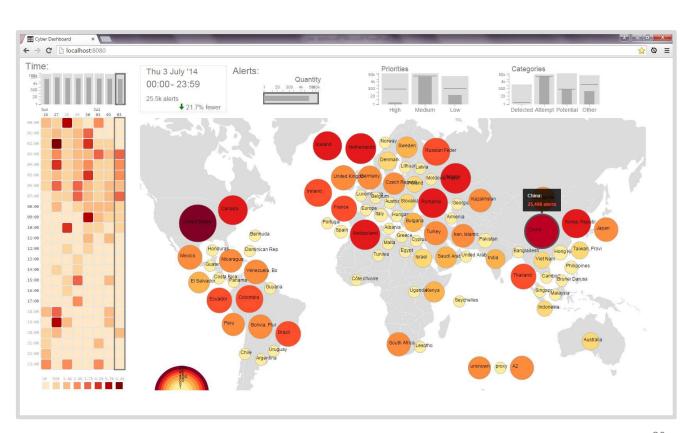
3D graph examples

humans are bad with 31 thus usually avoided

IV

feedback with analyst:

avoid complex visualizations


clear aggregation

iterated on the design

evaluation:

tested usability

deployed to users

reflections:

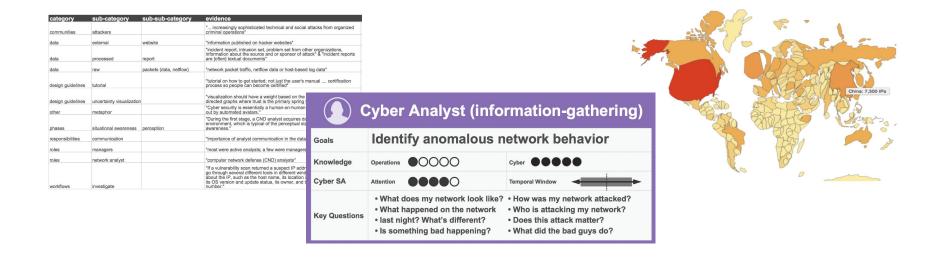
- effective for comparing multiple encodings
- worked well for a use-case of a dashboard
- complex visualizations may be useful for analysis

usage recommendation:

repurpose the tools you know and experiment with new ones:

e.g. Python, Tableau, Gephi, D3.js, Processing, Excel, Spotfire, Arcsight, Splunk

design methods can overcome limited time and access to users


qualitative coding

personas

data sketches

redesign

dashboard

to find out more:

sean@cs.utah.edu

http://mckennapsean.com/vizsec-design-methods/

acknowledgements: Jonzy, Dan Bowden, Tamara Denning, staff members at MIT Lincoln Laboratory, Dominika Mazur, Matthew Parkin, and James Agutter